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Abstract 

The chemical bonding manifolds in metal cluster skeletons (as well as in skeletons 
of clusters of other elements such as boron or carbon) may be classified according 
to their dimensionalities and their chemical homeomorphism to various geometric 
structures. The skeletal bonding manifolds of discrete metal cluster polyhedra may 
be either one-dimensional edge-localized or three-dimensional globally delocalized, 
although two-dimensional face-localized skeletal bonding manifolds are possible 
in a few cases. Electron precise globally delocalized metal cluster polyhedra with 
o vertices have 2o + 2 skeletal electrons and form deltahedra with no tetrahedral 
chambers having total skeletal bonding manifolds chemically homeomorphic to a 
closed ball. Electron-rich metal cluster polyhedra with o vertices have more than 
2o + 2 skeletal electrons and form polyhedra with one or more non-triangular 
faces, whereas electron-poor metal cluster polyhedra with o vertices have less than 
20 + 2 skeletal electrons and form deltahedra with one or more tetrahedral chambers. 
Fusion of metal cluster octahedra by sharing (triangular) faces forms three- 
dimensional analogues of polycyclic aromatic hydrocarbons such as naphthalene, 
anthracene, and perinaphthenide. Fusion of metal cluster octahedra by sharing 
edges can be extended infinitely into one and two dimensions forming chains 
(e.g. Gd2CI 3 ) and sheets (e.g. ZrC1), respectively. Infinite extension of such fusion 
of metal cluster octahedra into all three dimensions leads to bulk metal structures. 
Unusual anionic platinum carbonyl clusters can be contructed from stacks of Pt 3 
triangles or Pt 5 pentagons. The resulting platinum polyhedra appear to exhibit 
edge-localized bonding, supplemented by unusual types of delocalized bonding 
at the top and the bottom of the stacks. Superconducting ternary molybdenum 
chalcogenides and lanthanide rhodium borides consist of infinite lattices of electron- 
ically linked edge-localized Mo 6 octahedra or Rh 4 tetrahedra, leading naturally to 
the idea of porous delocalization in superconducting materials. 
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1. I n t r o d u c t i o n  

In recent years, the chemistry of metal cluster compounds has attracted 
increasing interest [1]. Such compounds are constructed from polyhedra having 
metal atoms at the vertices. The structures of key types of metal cluster compounds 
have been established by X-ray crystallography. 

A variety of theoretical approaches have been developed to treat chemical 
bonding in metal cluster compounds, as well as related cluster compounds having non- 
metals such as boron and carbon at the vertices. A key aspect in the early development 
of such theories is the recognition of the close relationships between polyhedral 
boranes and carboranes on the one hand, and transition metal clusters on the other 
hand [2]. Important theoretical approaches include our graph theory derived method 
[3 - 6 ] ,  the original Wade-Mingos skeletal electron pair method [ 7 - 9 ] ,  the extended 
Hiickel calculations by Lauher [10], the perturbed spherical shell theory by Stone 
[11,12], and the topological electron counting method by Teo [13-16] .  Strengths 
of our graph theory derived method include the following: 

(1) The ability to deduce important information about the electron counts 
and shapes of diverse metal clusters using a minimum of computation. 

(2) The ability to generate reasonable electron-precise bonding models for metal 
clusters that appear intractable by other methods not requiring heavy computation. 

(3) Information concerning the distribution of total cluster electron counts 
between skeletal bonding within the cluster polyhedra and bonding to external ligands.. 

(4) Ability to distinguish between localized and delocalized bonding in cluster 
polyhedra. 

This last point leads naturally to the concepts of the topologies and dimen- 
sionalities of metal cluster chemical bonding manifolds. Thus, the chemical bonding 
manifold of an edge-localized metal cluster is the 1-skeleton [17] of the underlying 
polyhedron and therefore is one-dimensional. However, the chemical bonding mani- 
fold of a globally delocalized metal cluster includes the whole volume of the under- 
lying polyhedron and therefore is three-dimensional. Such concepts appear to be of 
practical as well as theoretical interest. For example, relatively high critical super- 
conducting temperatures and magnetic fields in infinite metal cluster structures 
appear to be associated with a one-dimensional rather than a three-dimensional 
infinite chemical bonding manifold, leading naturally to the concept of porous de- 
localization [18,19]. 

This paper reviews some topological and dimensional ideas relative to under- 
standing the structure and bonding in diverse types of metal clusters. In contrast to 
previous presentations of related ideas [ 3 - 6 ] ,  this paper stresses the topological 
aspects of this theory and minimizes certain chemical details related to electron 
counting procedures and atomic orbital properties. This paper thus attempts to make 
some of the more interesting topological ideas in metal cluster structure and bonding 
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accessible to mathematicians as well as chemists. Readers wishing to supplement the 
topological ideas in this paper with chemical details are referred to the earlier presenta- 
tions of this theory [ 3 - 6 ]  and the further references cited therein. 

2. D i m e n s i o n a l i t y  and  t o p o l o g y  o f  chemica l  b o n d i n g  

Consider a set of  n atoms forming an n-center bond by overlap of appropriate 
atomic orbitals. The minimum number of dimensions d necessary to contain the n 
atoms can be called the dimensionality of the chemical bond. The dimensionality of 
the chemical bond can only be the integers 1, 2, or 3 and cannot exceed n - 1. If 
d = n - 1, then the chemical bond may be called simplicial. All two-center bonds 
must be simplicial and one-dimensional. In addition, all three-center bonds involving 
atoms in a triangle are simplicial and two-dimensional. The only examples of three- 
dimensional chemical bonds are derived from the n-center core bond in a globally 
delocalized polyhedron [ 3 - 6 ]  ; such bonds are almost never simplicial since n >~ 6 
in almost all cases. 

Two topological spaces are homeomorphic if there are one-to-one mappings 
from one to the other that stretch and bend their domains into their ranges without 
tearing [20]. An analogous concept of chemical homeomorphism can be used to 
characterize the topologies of chemical bonding manifolds by relationships to familiar 
types of geometric structures. In this context, a triangular face of a polyhedron may 
be regarded as chemically homeomorphic to a closed surface, whereas a face with 
more than three edges may be regarded as chemically homeomorphic to an open hole. 
This is related to an idea apparently first presented by Kettle [21] in 1965. In this 
sense, a deltahedron having no tetrahedral chambers becomes chemically homeo- 
morphic to a sphere and a polyhedron having one non-triangular face (and no tetra- 
hedral chambers) becomes chemically homeomorphic to a sphere with a hole in it 
(i.e. a singly punctured sphere). More complicated polyhedral metal clusters can be 
chemically homeomorphic to more complicated surfaces or other geometric structures. 

3. E l e m e n t a r y  e x a m p l e s  o f  d i f f e r e n t  chemica l  b o n d i n g  d imens iona l i t i e s  

3.1. ONE-DIMENSIONAL 

The only type of one-dimensional chemical bond is the ubiquitous two-center 
bond between a pair of  atoms characteristic of  localized structures. Edge-localized 
polyhedral metal clusters may be regarded as chemically homeomorphic to the 1- 
skeleton [17] of the polyhedron. Such edge-localized polyhedral metal clusters are 
found when the vertex degrees of the polyhedron match the numbers of internal 
orbitals used by the vertex atoms [5,6]. Since vertex atoms normally use three internal 
orbitals, edge-localized polyhedra normally are those with degree 3 vertices such as 
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the tetrahedron, cube, prisms, and the regular I h dodecahedron. Prototypical examples 
of edge-localized metal polyhedra are the tetrahedral metal cluster carbonyls M4(CO)I2 
(M = Co, Rh, Ir) and their derivatives. In some cases, early transition metal vertices 
use four rather than three internal orbitals. In such cases, edge-localized metal octa- 
hedra are possible [5,22]. Prototypical examples of edge-localized metal octahedra 
are found in molybdenum (II)halide derivatives of the type Mo6C18 L~ ÷. 

3.2. TWO-DIMENSIONAL 

Examples of two-dimensional chemical bonds are found in planar polygons 
and in networks of triangles. The two-dimensional bonding in planar polygons (other 
than triangles) is non-simplicial. Examples of such systems include planar aromatic 
hydrocarbons such as cyclopentadienide, benzene, and tropylium, as well as analogous 
metal cluster systems such as Bi~- and Se~ ÷. The total skeletal chemical bonding 
manifold of a planar polygon molecule such as benzene consists of a two-dimensional 
open manifold from the so-called n-bonding bounded by a one-dimensional circum- 
ference from the so-called a-bonding. Such a total skeletal bonding manifold is 
chemically homeomorphic to a closed disk, in which the boundary is the one-dimen- 
sional bonding manifold and the interior is the two-dimensional bonding manifold. 
The two-dimensional bonding in networks of triangles is best exemplified by the 
surface bonding in a deltahedral metal cluster. Such a two-dimensional skeletal bond- 
ing manifold most commonly encloses a three-dimensional skeletal bonding manifold 
in globally delocalized deltahedral metal clusters. An exceptional example of an 
empty closed two-dimensional skeletal bonding manifold is found in the face-localized 
octahedral niobium clusters of the type Nb6ClI2L~ ÷ (ref. [22]). Such a bonding 
manifold is chemically homeomorphic to an (empty) sphere and requires four rather 
than the normal three internal orbitals from each vertex atom [22]. Unusual examples 
of two-dimensional chemical bonding manifolds are found in the M6bius strips 
formed by sets of orbitals at each end of the stacked triangle platinum carbonyl anion 
clusters [23,24]. 

3.3. THREE-DIMENSIONAL 

Three-dimensional chemical bonding corresponds to delocalization through- 
out a volume and is exemplified by the core bonding in globally delocalized delta- 
hedral clusters. [ 3 - 6 ] .  The total skeletal bonding manifold of a globaUy delocalized 
deltahedral duster consists of a three-dimensional open manifold from the core 
bonding bounded by a two-dimensional surface from the surface bonding. Such a 
bonding manifold is chemically homeomorphic to a closed ball, in which the boundary 
is the two-dimensional surface bonding manifold and the interior is the three-dimen- 
sional core bonding manifold. 
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Table 1 

Relationships between vertex degree, bonding type, and chemical bonding manifold 
dimensionalities for the fundamental types of polygons and polyhedra a 

Vertex Skeletal bonding 
degree Cluster type Bonding type manifold dimensionalities 

2 polygon localized + 1 ("a-bonding") 
delocalized 2 ("n-bonding") 

3 "simple" polyhedron localized 1 (i.e. 1-skeleton) 

4 deltahedron (without delocalized 2 (surface bonding) 
tetrahedral chambers) 3 (core bonding) 

aThese relationships apply for normal vertex atoms using three internal orbitals for 
skeletal bonding. 

Table 2 

The types of chemical bonding manifolds for discrete octahedral metal clusters 

Bonding type 
Internal orbitals 

from each Skeletal bonding Examples a 
vertex atom manifold dimensionalities 

Edge-localized 4 1 (i.e. 1-skeleton) 

Face-localized 4 2 (i.e. empty closed 
surface) 

Globally delocalized 3 2 (surface bonding) 
3 (core bonding) 

Mo 6 X s L~ +, "Mo 6 CI, 2 ", 
Chevrel phases 

Nb6XI2L~ + 

Zr 6 C112 Be, Zr 6 Cl13 B, Zr e Cll s N, 
Rh6 (CO)16, Os6 (COn; 

aL refers to electron pair donor ligands (including lone electron pairs from halogens or chalcogens 
bridging two other octahedra); the Be, B, and N atoms in the Zr~ clusters are located in the center 
of the Zr6 octahedra. 

The relationships between different  cluster types and the dimensionalities o f  

their  skeletal bonding manifolds are illustrated in tables 1 and 2. Table 1 summarizes 

relationships be tween the vertex degree, bonding type ,  and skeletal bonding manifold 

dimensionalities for  the fundamental  types o f  polygons and polyhedra.  Table 2 sum- 
marizes the different  types o f  skeletal bonding manifolds for  discrete octahedral  

metal  clusters. 
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4. M a x i m a l l y  de loca l i zed  d iscre te  m e t a l  c lus ter  polyhedra 

The discrete metal cluster polyhedra of interest are those with skeletal bonding 
manifolds which are maximally delocalized and hence of maximum dimensionality, 
namely 3. These are to be contrasted with the edge-localized and face-localized metal 
clusters discussed above having skeletal bonding manifolds of  dimensionaiities 1 and 2, 
respectively. Maximally delocalized metal cluster polyhedra are classified by the 
number of  skeletal electrons relative to the number of vertices; details of the electron 
counting are presented elsewhere [ 3 - 6 ] .  

4.1. ELECTRON PRECISE DELTAHEDRA (20 + 2 SKELETAL ELECTRONS) 

Such electron precise deltahedra have no tetrahedral chambers, i.e. no degree 
3 vertices. The octahedron is the smallest deltahedron with these properties and is 
the fundamental building block for many metal cluster structures, including those 
with fused metal polyhedra [22]. The properties of such electron precise deltahedra 
having from six to twelve vertices are summarized in table 3. 

Table 3 

Properties of some deltahedra without tetrahedral chambers a,b 

Vertices of degrees 
Vertices Deltahedron name a Edges F a c e s  Symmetry 4 5 6 

6 Octahedron 12 8 O h 6 0 6 

7 Pentagonal bipyramid 15 10 Dsh 5 2 0 

8 Bisdisphenoid 18 12 D2d 4 4 0 
( '~D2d dodecahedron ") 

9 4,4, 4-tricapped trigonal prism 21 14 D3h 3 6 0 

10 4, 4-bicapped square antiprism 24 16 D4d 2 8 0 

11 B~ H~" polyhedron 27 18 C2V 2 8 1 

12 Icosahedron 30 20 I h 0 12 0 

aFor deltahedra having eight or more vertices, the deltahedron having the minimum number of 
degree 6 vertices (without introducing any degree 3 vertices) is chosen. For two such deltahedra, 
the deltahedron having maximum symmetry is chosen. The designations "4, 4, 4-tricapped" and 
"4, 4-bicapped" refer to capping square or rectangular faces in smaller polyhedra. 

bNote that the number of vertices (v), edges (e), and faces (f) of all of these polyhedra satisfy the 
Euler formula e + 2 = v +f. 

The total skeletal bonding manifold of  an electron precise deltahedron having 
v vertices consists of  two parts, namely the surface and core bonding manifolds. The 
surface bonding manifold is a hybrid of  chains of v pairs of two-center bonds corre- 
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sponding to the Hamiltonian circuits of the deltahedron. These two-center bonds use 
the tangential or twin internal orbitals of the vertex atoms. The hybridization process 
converts the one-dimensional manifolds of the chains corresponding to individual 
Hamiltonian circuits into two-dimensional manifolds chemically homeomorphic to the 
sphere. The core bonding manifold consists of a single o-center core bond formed by 
overlap of the radial or unique internal orbitals in the center of the deltahedron and is 
chemically homeomorphic to an open ball. The total skeletal bonding manifold of 
electron precise deltahedra is the sum of the surface and core bonding manifolds and 
is chemically homeomorphic to a closed ball in which the boundary is the surface 
bonding manifold and the interior is the core bonding manifold. 

4.2. ELECTRON-RICH POLYHEDRA (MORE THAN 20 + 2 SKELETAL ELECTRONS 

Electron-rich polyhedra are polyhedra having one or more non-triangular faces. 
In boron hydride chemistry [25,26], such polyhedra have the special names nido, 
arachno, hypso, and klado, corresponding to 2o + 4, 2o + 6, 2o + 8, and 20 + 10 
skeletal electrons, respectively, for polyhedra having o vertices. An increase in the 
number of skeletal electrons relative to the number of vertices leads to an increase 
in the number and/or sizes of the non-triangular faces. The most important electron- 
rich polyhedra are the pyramids. These correspond to 2o + 4 skeletal electron nido 
systems, in which the base of the pyramid is the single non-triangular face. 

The total skeletal bonding manifold of electron-rich polyhedra consists of 
three parts, namely the surface, hole, and core bonding manifolds. The two-dimen- 
sional surface bonding manifold is similar to that in the electron precise deltahedra 
discussed above except that it has holes corresponding to the non-triangular faces of 
the electron-rich polyhedron. The surface bonding manifold of electron-rich poly- 
hedra is thus chemically homeomorphic to a sphere with holes in it, i.e. a punctured 
sphere. The hole bonding manifolds are two-dimensional, involve only orbitals of 
atoms bordering the holes, and are closely related to the two-dimensional bonding 
manifold of planar polygons (see above). The hole bonding manifolds thus function 
as patches for the holes in the surface bonding manifolds. The core bonding mani- 
folds in electron-rich polyhedra are similar to those in electron precise deltahedra 
except that they now involve unique internal (radial) orbitals of only the interior 
vertex atoms, i.e. vertex atoms not bordering holes [3,5,6]. For this reason, an 
excessive number of non-triangular faces (i.e. topological holes) destroys the possibility 
for a delocalized skeletal bonding manifold. 

The total skeletal bonding manifold of electron-rich polyhedra is chemically 
homeomorphic to a closed ball like the total skeletal bonding manifold of electron 
precise deltahedra. In both cases, the interiors of these manifolds consist of the core 
bonding manifolds, which are chemically homeomorphic to open balls. However, in 
the case of the electron-rich polyhedra, the boundary of the total skeletal bonding 
manifold is the sum of the surface and hole bonding manifolds, with the hole bonding 
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manifolds patching the holes in the surface bonding manifolds, leading to a boundary 
which is chemically homeomorphic to an unpunctured sphere. 

4.3. ELECTRON-POOR CAPPED DELTAHEDRA (LESS THAN 2v + 2 SKELETAL 
ELECTRONS) 

Electron-poor capped deltahedra are constructed from a central deltahedron 
without tetrahedral chambers by capping one or more of its triangular faces, thereby 
producing one tetrahedral chamber for each such cap. Altematively, electron-poor 
polyhedra may be constructed by face-sharing fusion of one or more tetrahedra to 
the central deltahedron or to a smaller capped deltrahedron. A decrease in the number 
of electrons relative to the number of vertices (i.e. an increase in the "electron 
poverty") leads to an increase in the number oftetrahedral chambers. The best example 
of an electron-poor deltahedron is the capped octahedron in Rh7 (CO)136 (ref. [27] ) or 
Os7(CO)21 (ref. [28]). 

The total skeletal bonding manifold of such an electron-poor capped delta- 
hedron consists of the sum of that of the central deltahedron and that of the tetra- 
hedral chambers formed by the caps. The bonding in such tetrahedral chambers is 
edge-localized because the degree 3 vertex of the cap forming the chamber matches 
the three internal orbitals of the corresponding vertex atom. The chemical bonding 
manifold of the tetrahedral chamber is thus its 1-skeleton [17]. The total skeletal 
bonding manifold of a capped deltahedron with a globally delocalized central delta- 
hedron consists of a closed ball corresponding to the central deltahedron with "tepee 
frames" on its surface corresponding to the 1-skeletons of the tetrahedral chambers. 

This treatment of the chemical bonding topology of electron-poor capped 
deltahedra assumes that there is a central deltahedron without tetrahedral chambers. 
Such is not the case for the electron-poor Os6(CO)xa, which has a bicapped tetra- 
hedron for its Os6 framework [28]. Such a bicapped tetrahedron can be constructed 
by fusing three tetrahedra through face sharing, just as a trigonal bipyramid can be 
constructed by an analogous fusion of two tetrahedra (fig. 1). Since the full volume 
of the Os6 framework in Os6(CO)la consists of tetrahedral chambers, its total skeletal 
bonding manifold consists of the 1-skeleton of the bicapped tetrahedron correspond- 
ing to twelve two-center osmium-osmium bonds along the edges. 

4.4. POLYHEDRAL PUNCTURE AND POLYHEDRAL CAPPING 

Consider an electron precise globally delocalized deltahedron having v vertices 
and the requisite 2v + 2 skeletal electrons. An electron-rich nido polyhedron with one 
non-triangular face, o - 1 vertices, and 2(0 - 1) + 4 = 2v + 2 apparent skeletal electrons 
can be formed by polyhedral puncture, i.e. making a hole in the deltahedral surface by 
removal of  a vertex and all edges bonded to that vertex. Polyhedral puncture is a 
remedy for electron richness since it removes electrons but no bonding orbitals. 
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Tetmhedron Trigonal Bipyramid Bicapped Tetrahedron 

Fig. 1. Successive capping of a tetrahedron to ~ve a trigona] bipyramid 
and bicapped tetrahedron (e.g. the Os 6 framework in Os6(CO)18). 

~ Square Pyramid %~iog~,,~ 

Octahedron ~%.e . ~ ~ ~  ~,~C, ~ Square Pyramid 

Capped 
Octahedron 

Fig. 2. Successive puncture and capping of an octahedron in either 
sequence to give the 3-capped square pyramid found in H 20s~ (CO)~. 
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Conversely, an electron-poor capped deltahedron with one tetrahedral chamber, 
v + 1 vertices, and 2(v + 1) = 2v + 2 apparent skeletal electrons can be formed by 
polyhedral capping, i.e. adding a vertex and three edges as a cap on one of the tri- 
angular faces of the deltahedron. Polyhedral capping is a remedy for electron poverty 
since it adds electrons but no bonding orbitals. Polyhedral puncture and polyhedral 
capping may be regarded as dual or complementary processes since they have opposite 
effects. An interesting example of a metal cluster formed from an electron precise 
deltahedron by successive application of polyhedral puncture and polyhedral capping 
in either order is H20s6 (CO)18. The Os6 framework in this cluster is a square pyramid 
with a capped triangular face [28]. This polyhedron can be formed from an octa- 
hedron by applying polyhedral puncture and polyhedral capping in either of the two 
possible sequences (fig. 2). The opposite effects of these dual processes on the electron 
count cancel each other so that the 3-capped square pyramidal H2Os6(CO)I 8 has 
exactly the same 14 (= 2u + 2 for u = 6) skeletal electron count as the isoelectronic 
regular octahedral clusters HOs 6 (CO)18 and Os6 (CO)~ (ref. [28] ). 

5. F u s e d  and  l inked  me ta l  c luster  p o l y h e d r a  

5.1. FUSION OF OCTAHEDRA 

Polycyclic aromatic hydrocarbon structures are constructed from benzene 
rings by fusion of these hexagons so that they share edges. Thus, two-dimensional 
polygons fuse by sharing one-dimensional simplices [17] (i.e. edges). In an analogous 
way, metal duster octahedra can fuse by sharing (triangular) faces to form more 
complicated metal cluster structures. In these cases, three-dimensional polyhedra fuse 
by sharing two-dimensional simplices [17] (i.e. triangular faces). Figure 3 summarizes 
these analogies using examples taken from the diverse areas of rhodium carbonyl 
anions [27] and molybdenum sulfides [18]. In the case of molybdenum sulfides, 
fusion of Mo6 octahedra by sharing faces can be extended infinitely, leading to linear 
[Mo6 S~-] ~ chains which are analogues of polyacenes. 

Fusion of metal octahedra can also occur through edge sharing rather than 
face sharing. A finite example of such fusion is found in the ruthenium carbonyl 
carbide cluster anion RuloC2(CO)]2 (fig. 4, top). Infinite fusion of metal octahedra 
in this way is significant in providing a link between discrete metal clusters and bulk 
metal structures [22]. In the intermediate cases of such infinite fusion in one and 
two dimensions, the external surfaces of the metal cluster chains and sheets are 
protected by bridging halogen atoms. Such infinite fusion of Gd6 octahedra in one 
dimension leads to Gd= C13 chains (fig. 4, bottom) containing two tetrahedral cavities 
for each octahedral cavity. The electron count in this system corresponds to globally 
delocalized bonding in both the octahedral and tetrahedral cavities, and therefore to 
a three-dimensional skeletal bonding manifold occupying the entire volume of the 
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Benzene Nophfholene Anthracene Perinophthenide 

C 6 H6 C~oH8 C14 HIO CI3 H9 

Polyocene 

C4H 2)ao 
a:) 

Rh 6 (CO) 16 

Mo6S8 4- 

_/fb-.._ 

Rh 9(C0)~; H2 Rhl2(C0)25 Rhll (CO)~; 
6- 

M°9SI?- M°'I2S 14- (Me 6 $6)~ 

Fig. 3. Analogies between the fusion of metal octahedra in rhodium carbonyl and 
molybdenum sulfide clusters and the fusion of carbon hexagons (benzene rings) in 
planar polycyclic atomatic hydrocarbons. 

Gd2 C13 chains. Such an interpretation leads to a closed shell electronic configuration 
for Gd2C13 consistent with its semiconducting energy gap of approximately 1 eV [29]. 
Infinite fusion of metal octahedra in two dimensions leads to the sheet-like ZrC1 
structure similar to infinite fusion of benzene hexagons in two dimensions to give 
the sheet-like graphite structure [22]. The two-dimensional ZrC1 structure, like the 
one-dimensional Gd2C13 structure, has two tetrahedral cavities for each octahedral 
cavity, and an electron count corresponding to a single multicenter bond in each of 
the cavities [22]. 

Infinite fusion of metal octahedra in all three dimensions leads to bulk metal 
structures which frequently maintain the feature of two tetrahedral cavities for each 
octahedral cavity. Formation of a multicenter bond in each of these cavities leads to 
a total skeletal bonding manifold occupying the entire volume of space. This ultimate 
delocalization relates to the "electron gas" model for bulk metals [30] and accounts 
for their characteristic physical properties. Such multicenter bonding in the polyhedral 
cavities of a metal structure appears to be maximized for metals having six valence 
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o CI a 

0 (1 

Fig. 4. (a) Top: The pair of  carbon-centered edge-fused metal 
octahedra found in Ru~0Ca (CO)~-; (b) Bottom: A unit of two 
octahedra found in the infinite chain C_,d2C1 ~ structure based 
on edge-fused metal octahedra. 

electrons [22] such as chromium, molybdenum, and tungsten, and correlates at least 
crudely with experimental information on the heats of atomization [31] and the 
properties of certain alloys [32]. 

5.2. ANIONIC PLATINUM CARBONYL CLUSTERS 

Platinum forms some anionic carbonyl clusters exhibiting interesting structures 
[23,24]. The platinum frameworks of these clusters are illustrated in fig. 5. These 
structures may be constructed from stacks of platinum polygons having odd numbers 
of vertices. Rather unusual skeletal bonding topologies appear to be necessary to 
account for the electron counts and symmetries of these systems. 

Consider first the stacked platinum triangle clusters of the general formula 
Pt3t¢(co)gt~, of which two examples are illutrated in fig. 5. The total skeletal bonding 
manifold consists of both one-dimensional and two-dimensional components. The 
one-dimensional component consists of the 1-skeleton of the triangle stack and 
corresponds to 6k - 3 edge-localized bonds for a Pt3k(CO)~ cluster. The two-dimen- 
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2- 2- 
PI6 (C0)12 Pf9 (C0)18 

k=2 k=3 
L, J 

3 f  

Pt3, Icol6 - Pt gCCO)2 - 
Fig. 5. Schematic diagrams of the stacked triangle platinum 
carbonyl anion clusters Pt3k(CO)~/~ (k = 2, 3) and the threaded 
tubular stacked pentagon cluster Pt ~ 9 (CO)~'. In the Pt ~ 9 (CO)~" 
structure, the four platinum atoms of the Pt 4 thread are shown 
as squares and the fifteen platinum atoms of the Pt15 stack 
of the three Pt 5 pentagons are shown as circles, o 

sional component consists of  M6bius strips at both the top and bottom of  the Pt a 
triangles of  the stack and is formed by metal d orbitals which undergo a phase change 
at each platinum atom of  these triangles. 

There is also one known platinum carbonyl structure based on stacked Pts 
pentagons, namely the Pt19 (CO)~ anion (fig. 5) [23,24]. The larger area of  a pentagon 
relative to a triangle leads to the possibility of  threading the tubular stack of  three Pts 
pentagons with a thread of  four platinum atoms so that there are pentagonal pyramid 
cavities at the top and bottom of  the stack. The skeletal bonding manifolds in these 
pentagonal pyramid cavities are similar to those in isolated pentagonal pyramid struc- 
tures, such as the borane B6Hlo, which are nido systems having 16 skeletal electrons 
(=  2u + 4 for u = 6). The total skeletal bonding manifold of  Pt19(CO)~ having the 
following components accounts for the electron count in this system: 

(a) One-dimensional: The 1-skeleton [17] of  the Phs stack consisting of 
25 edges as well as the three edges of  the Pt4 thread; 
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(b) Two-dimensional: The surfaces of the Pt  6 pentagonal pyramids at each 
end of the Ptls stack; 

(c) Three-dimensional: The cores of the Pt6 pentagonal pyramids at each end 
of the Ptls stack. 

5.3. POROUS DELOCALIZATION IN SUPERCONDUCTORS 

Two classes of superconductors exhibiting relatively high critical temperatures 
and magnetic fields are the ternary molybdenum chalcogenides [18] and the ternary 
lanthanide rhodium borides [19]. Both of these classes of superconductors exhibit 
similar special features in their skeletal bonding topologies which can be described as 
porous delocalization. Such porously delocalized systems consist of lattices of linked 
edge-localized polyhedra in which the individual polyhedra are held close enough 
together and each polyhedron lacks one or two electrons of closed shell electronic 
configurations so that infinite electronic communication is possible in all three dimen- 
sions. In the case of the ternary molybdenum chalcogenides [ 18], the metal polyhedra 
are Mo 6 octahedra, similar to those found in discrete octahedral molybdenum cluster 
halides (table 2). In the case of the ternary lanthanide borides [19], the metal poly- 
hedra are Rh, tetrahedra, similar to those found in the discrete rhodium cluster 
carbonyl Rh4 (CO)12. The skeletal bonding manifold of porously delocalized systems, 
although extending infinitely into all three dimensions, is only one-dimensional, 
consisting of the 1 -skeletons of individual metal polyhedra linked by localized chemical 
bonds. From a physical point of view, this appears to relate to localization of the 
conduction electron wave function on the metal polyhedra, leading to an extremely 
short mean free path and/or a low Fermi velocity corresponding to a small B.C.S. 
coherence length [33]. 

The ternary molybdenum chalcogenides of interest are the Chevrel phases of 
general formulae MnMO6S8 and MnMo6Se8 (M = Ba, Sn, Pb, Ag, lanthanides, Fe, Co, 
Ni, etc.). These phases were the first superconducting ternary systems found to have 
relatively high critical temperatures [34], reaching 15 K for PbMo6S8. In addition, 
the upper critical field of PbMo6S8 (Hc2 ~ 60 T) is the highest value observed for 
any class of superconductors [35]. From the structural point of view, these Chevrel 
phases are constructed from Mo6S8 (or Mo6Se8) units containing a bonded Mo6 
octahedron with a sulfur atom capping each face, leading to an Mo6 octahedron within 
an $8 cube. Each sulfur atom furnishes four electrons to the Mo 6 octahedron within 
its $8 cube and its remaining two electrons to an adjacent M06 octahedron. Maximizing 
this latter bonding results in a tilting of the M06 octahedron by about 25 ° within 
the cubic array of the other metal atoms M (e.g. Pb in PbM06S8) [36]. These other 
metal atoms M furnish electrons to the M06 $8 units, allowing them to approach but 
not attain the M06S84- closed shell electronic configuration. This corresponds to a 
partially filled valence band. Electronic bridges between individual Mo 6 octa- 
hedra are provided by interoctahedral metal-metal interactions. Thus, for M06S8 
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derivatives, the nearest interoctahedral Mo-Mo distances fall in the range 3.08 to 
3.49 A as constrasted with the intraoctahedral Mo-Mo distances in the range 2.67 to 
2.78 k .  

The ternary lanthanide rhodium borides have the general formulae LnRh4 B4 
(Ln = certain lanthanides such as Nd, Sm, Er, Tm, Lu) and exhibit significantly higher 
superconducting transition temperatures than other types of metal borides [19]. Their 
structures consist of Rh4 B4 units containing a bonded Rh4 tetrahedron with a boron 
atom capping each face, leading to an Rh4B4 cube with 2.17 A Rh-B bonds along 
each of the twelve edges and 2.71 A Rh-Rh bonds along six face diagonals. The ratio 
between these two bond lengths, namely 2.71/2.17 = 1.25, is only about 13% less 
than the ~ / 2 =  1.414 ratio of these lengths in an ideal cube. The lanthanides, Ln, 
furnish three electrons to the Rh4B4 cube, allowing them to approach, but still 
fall one electron short of the closed shell electronic configuration Rha B~-. Again, this 
corresponds to a partially filled valence band. The RhaB 4 cubes are held close 
enough for electronic communication between adjacent cubes by means of inter- 
cube B-B and Rh-Rh bonding. 

6. S u m m a r y  

This paper shows how topological and dimensional ideas are useful for 
characterizing the skeletal chemical bonding in the diverse variety of metal cluster 
structures. Of particular importance in polyhedral metal clusters is the contrast between 
one-dimensional edge-localized skeletal bonding and three-dimensional globally 
delocalized skeletal bonding. One-dimensional edge-localized skeletal bonding appears 
to be preferred when the vertex degrees match the numbers of internal orbitals from 
the corresponding vertex atoms. 

Methods for fusing and linking metal cluster polyhedra are also of interest. 
Metal octahedra can be fused by sharing either faces or edges. Metal clusters con- 
structed from the face sharing of metal octahedra may be regarded as three-dimensional 
analogues of polycyclic aromatic systems constructed from the edge sharing of carbon 
hexagons. Edge sharing of metal octahedra can be extended indefinitely into one and 
two dimensions, leading to Gd2C13 chains and ZrC1 sheets, respectively. The limiting 
case of infinite edge sharing of metal octahedra in all three dimensions corresponds 
to the bulk metal structures. 

Special cases of fused metal polyhedral clusters are found in anionic platinum 
carbonyl clusters, which are constructed by stacking Pt3 triangles or Pts pentagons. 
The (Pts)k pentagonal stack is threaded by an additional Pt k ÷ 1 chain (k = 3). The 
resulting polyhedra appear to exhibit edge-loca~zed bonding supplemented by 
unusual types of delocalization at both the top and the bottom of the stacks. 

These topological and dimensional ideas appear to be important for under- 
standing the physical properties of materials based on metal cluster structures. Thus, 
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the superconducting ternary molybdenum chalcogenides and temary lanthanide 
rhodium borides exhibiting relatively high superconducting transition temperatures 
and/or magnetic fields appear to consist of infinite lattices of electronically linked 
edge-localized metal polyhedra (i.e. Mo6 octahedra or Rh4 tetrahedra), leading 
naturally to the idea of porous delocalization in superconducting materials. This 
observation suggests that a more detailed understanding of metal cluster bonding 
topologies will provide a basis for the design of novel solid-state materials with interest- 
ing and useful electrical, magnetic, and optical properties including superconductors, 
semiconductors, photoconductors, ferromagnets, and laser materials. 
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